Approximating the coefficients in semilinear stochastic partial differential equations
نویسندگان
چکیده
منابع مشابه
Symmetry Coefficients of Semilinear Partial Differential Equations
We show that for any semilinear partial differential equation of order m, the infinitesimals of the independent variables depend only on the independent variables and, if m > 1 and the equation is also linear in its derivatives of order m− 1 of the dependent variable, then the infinitesimal of the dependent variable is at most linear on the dependent variable. Many examples of important partial...
متن کاملFoundations of the Theory of Semilinear Stochastic Partial Differential Equations
The goal of this review article is to provide a survey about the foundations of semilinear stochastic partial differential equations. In particular, we provide a detailed study of the concepts of strong, weak and mild solutions, establish their connections, and review a standard existenceand uniqueness result. The proof of the existence result is based on a slightly extended version of the Bana...
متن کاملThe Substitution Theorem for Semilinear Stochastic Partial Differential Equations
Abstract. In this article we establish a substitution theorem for semilinear stochastic evolution equations (see’s) depending on the initial condition as an infinite-dimensional parameter. Due to the infinitedimensionality of the initial conditions and of the stochastic dynamics, existing finite-dimensional results do not apply. The substitution theorem is proved using Malliavin calculus techni...
متن کاملFinite element methods for semilinear elliptic stochastic partial differential equations
We study finite element methods for semilinear stochastic partial differential equations. Error estimates are established. Numerical examples are also presented to examine our theoretical results. Mathematics Subject Classification (2000) 65N30 · 65N15 · 65C30 · 60H15
متن کاملThe Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations∗
The main objective of this paper is to characterize the pathwise local structure of solutions of semilinear stochastic evolution equations (see’s) and stochastic partial differential equations (spde’s) near stationary solutions. Such characterization is realized through the long-term behavior of the solution field near stationary points. The analysis falls in two parts 1, 2. In Part 1, we prove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Evolution Equations
سال: 2011
ISSN: 1424-3199,1424-3202
DOI: 10.1007/s00028-011-0102-6